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Abstract

The instability of the solidifying front of a supercooled liquid in a half-space is investigated by introducing a small

disturbance at the solid–liquid interface. A relationship between the thermal properties of the material and the dis-

turbance growth rate is obtained using the heat balance equation at the interface, including the effects of surface

curvature on the equilibrium temperature. The heat balance equation is solved numerically and compared to the an-

alytical solution obtained by neglecting the effects of surface curvature. The results show that the thermal gradients

increase the growth rates of disturbances at the solid–liquid interface and that the effect of surface curvature results in a

decrease in the disturbance growth rates. Further analysis shows that marginal stability occurs in both the longer

wavelength and capillary regions.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The instability of a solidifying front can lead to the

appearance of dendrites and cellular structures within a

solidifying material. This phenomenon has important

implications in the field of materials science, relating in

particular to processing of alloys and homogeneous

substances since the nature of the solidification process

directly relates to the quality of the final product ob-

tained. For a solidifying front in a half-space, previous

investigations have shown that crystal formation can be

predicted by the growth of a disturbance introduced

along the solid–liquid interface. Perturbation analyses

have been applied to solidification problems and corre-

late the stability of a solidifying interface with the ap-

pearance of cellular growth [1–5].

In this study, we conduct a linear stability analysis of

the modified Stefan problem for a thermally super-

cooled, homogeneous material. The undisturbed prob-

lem is a classical phase-change problem of solidification

in a half-space [6]. The purpose of this investigation is to

relate the effects of thermal supercooling and surface

curvature on the growth of linear disturbances under

unsteady thermal conditions. The unsteady energy

equations are solved using a similarity variable and as-

suming that the densities in the liquid and solid phases

are equal and constant. We conduct a linear stability

analysis by regular perturbation of the thermal energy

equation where only first-order terms are retained. As an

indication of stability, only positive values of the wave

number are considered physically relevant in the analy-

sis. This analysis neglects solute diffusion found in multi-

component solidification, which has been the primary

focus of continuing investigations. By focusing on a

homogeneous material, this analysis provides insight

into the solidification of a planar front that advances at

a rate proportional to t�1=2. Stagnant conditions exist in

the fluid and convection does not occur.

In linear perturbation analysis, an arbitrary distur-

bance along a planar interface can be represented by a

summation of modal disturbances of varying wave-

length and negligible amplitude. A condition for linear

stability analysis is that the amplitude of the disturbance

be negligible in comparison to the characteristic lengths

of the posed problem. The application of linear distur-

bance analysis in solidification problems was first in-

troduced by Mullins and Sekerka [1] to a steady-state
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problem involving constitutional undercooling, the ef-

fect of mass transport on thermal equilibrium in alloys.

In addition to constitutional undercooling, Mullins and

Sekerka identified an additional factor influencing in-

terface stability, the undercooling at the liquid interface

due to the surface curvature.

The curvature of a disturbance begins to have an

effect on the local phase-change temperature when the

radius of curvature is very small, on the order of 10 lm
[4]. The effect that the curvature has on the melting

temperature is called the undercooling effect or the

capillary effect since the surface curvature is very large at

smaller wavelengths. Following thermodynamic princi-

ples, a large convex curvature at the interface as seen

from the liquid side, can be described mathematically as

the result of a high pressure in the solid region, on the

order of 100 MPa, created by the high interfacial energy

[4]. The high pressure in the solid further lowers the free

energy at the surface, thereby reducing the equilibrium

temperature at which the material solidifies. In this study

we assume that the interfacial energy is constant and

isotropic. Anisotropy becomes an important consider-

ation in the predictions of shapes and growth formations

of dendrites and cells. Similarly, the effects of nucleation

kinetics on surface temperature and stability are ne-

glected.

In the analysis of the constitutionally undercooled

problem in a steady-state thermal field, Mullins and

Sekerka [1] conclude that positive values of the distur-

bance growth rate cause instability at the interface, while

negative values lead to disturbance decay. In the steady-

state problem, the solid–liquid interface advances at a

constant rate. Solutions of this problem [1,2] show that

the effects of surface curvature and positive thermal

gradients at the interface increase stability at the solid–

liquid interface, while negative thermal gradients pro-

duce instability at the interface. In the longer wavelength

region, stability is dominated by positive thermal gra-

dients in the liquid and the capillary effect dominates

stability after a critical wave number in the capillary

region. Mullins and Sekerka identified a range of inter-

mediate wavelengths that are unstable. In an unsteady

diffusion problem, Delves [5,7] and Sekerka [8] show

that when the growth rate has an imaginary component,

the disturbance at the interface is always stable. Positive

values of the growth rate with non-zero imaginary

components do not occur. The findings show that the

interface does not support undamped oscillatory mo-

tion.

One of the limitations of the linear stability analysis

is that the condition of stability does not determine final

cell size or the morphology [1,4]. For similarity solutions

of the unsteady mass diffusion problem, Sekerka [8]

concludes that proportionality with half power in time is

an oversimplification of the solidification process, since

the velocity of the solidification front will approach in-

Nomenclature

cp specific heat of constant pressure, J/kgK

d0 capillary length, m

f marginal stability function

g thermal function

h capillary function

hsf specific latent heat of fusion, J/kg

K surface curvature, m�1

k wave number, 2p=k0

k̂k dimensionless wave number, k
ffiffiffiffiffiffi
als

p

Ste0 background Stefan number, cpðTm � TiÞ=hsf
s thickness of the solid phase, m

T phase temperature, K

Ti temperature of the supercooled liquid, K

Tm melting temperature, K

t time, s

x distance along the x-axis, m

y distance along the y-axis, m

Greek symbols

a thermal diffusivity, m2/s

bl parameter,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � ðix=alÞ

p
bs parameter,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � ðix=asÞ

p

B dimensionless capillary number

C Gibbs–Thompson coefficient, mK

e disturbance amplitude at the interface, m

j thermal conductivity

k dimensionless solidification parameter

k0 disturbance wavelength

q density in the solid and liquid phase

r interfacial energy, J/kg

s time at which disturbance is applied, s

/ amplitude equation of the temperature dis-

turbance, K

X disturbance growth rate, s�1bXX dimensionless growth rate, Xs
x wavelength frequency, s�1

Subscripts

l liquid phase

0 background or undisturbed region

s solid phase

Superscript
0 disturbance
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finity as time approaches zero. The linear kinetic law

explains the behavior of the advancing front for initial

time values and is relevant to times on the order 10�8 [9].

The proportionality of the advancement of the solidi-

fying front with half powers in time will not change the

condition of stability in this analysis, therefore the

similarity variable defined in this analysis will be used.

Sekerka [8] also concludes that the time dependence of

the advancement of the solidifying front changes how

the stability of the interface evolves in time. As time

evolves, the perturbations become too large for linear

theory to be valid. For the purposes of this analysis we

apply the linear analysis to the point at which the planar

surface becomes unstable and do not analyze the growth

of the disturbance in time.

Experimentally, the growth of dendrites and cell

structures in a solidifying front has been shown to have

greater complexity than that predicted by linear per-

turbation theory. Under solidifying conditions, other

imperfections such as grain boundaries and foreign

particles play a role in the development of interfacial

growth [10]. Experimental results under controlled

conditions have been found to be in quantitative

agreement with the perturbation theory applied to the

solidification of multi-component substances [10–12].

2. Mathematical formulation

In this problem, we consider a supercooled liquid

with temperature Ti that is in contact with a flat surface

of infinite dimensions at the liquid melting temperature

Tm. Initial nucleation along the surface of a wall causes

the liquid in contact with the wall to solidify. The liquid

continues to solidify along a moving solidification front

so that the solid thickness is sðtÞ. This is a classical phase

change problem known as the modified Stefan problem,

with a solution postulated by Neumann using similarity

methods [6]. We consider the time evolution of a dis-

turbance s0ðy; tÞ introduced at an arbitrary time, t, su-

perimposed on the undisturbed front with thickness s0ðtÞ
as shown in Fig. 1.

The undisturbed thickness of the solid region is [6]

s0ðtÞ ¼ 2k
ffiffiffiffiffi
alt

p
; ð1Þ

where the solidification parameter, k, is a constant of

proportionality between a characteristic solidification

length, s0, to a thermal diffusion length,
ffiffiffiffiffi
alt

p
. For con-

ditions in which a surface disturbance with small am-

plitude is introduced, the undisturbed thickness of the

solid region represents a characteristic length for arbi-

trary values of time. The solidification parameter is re-

lated to constants of proportionality used in other

works. For spherical growth under steady-state condi-

tions, a Peclet number, similar in function to the solid-

ification parameter, used in the Ivanstov solution has

been identified [13]. High values of the solidification

parameter indicate rapid solidification within the mate-

rial.

The Neumann solution relating the solidification

parameter, k, and the Stefan number yields [6]

kerfckek2 ¼ Ste0ffiffiffi
p

p ; ð2Þ

where Ste0 is the background Stefan number which can

also be viewed as a measure of thermal supercooling.

Neglecting the effects of curvature, the relationship

between the background thermal supercooling and the

solidification parameter is shown by the solid line in Fig.

2. No solution exists for a background Stefan number

equal or greater than 1. At a Stefan number greater than

1, instantaneous freezing of the liquid would occur.

Experiments of crystallization in solidifying materials

show that the measured Stefan number of the pertur-

bations along an interface is higher than the Stefan

number for a planar interface [13]. In this analysis, the

Stefan number is calculated for thermal supercooling

and includes the additional undercooling resulting from

linear perturbations at the surface

Ste ¼ Ste0 þ d0K; ð3Þ

where K is the surface curvature

K ¼
o2s0

oy2

1þ os0
oy

� �2� �3=2
� o2s0

oy2
; ð4Þ

since the disturbance is very small.

Fig. 1. Solidification of a supercooled liquid in a half-space

with an initial disturbance at the solid–liquid interface.
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A capillary length, d0, is defined in this analysis as

d0 ¼
cpC
hsf

; ð5Þ

where C is a capillary constant called the Gibbs–

Thompson coefficient [4] defined by the interfacial en-

ergy, r, and the specific latent heat of solidification, hsf ,
as

C ¼ Tmr
qhsf

: ð6Þ

The capillary number, B, is a dimensionless constant

of proportionality between the capillary length and the

thermal diffusion length

B ¼ d0ffiffiffiffiffi
alt

p : ð7Þ

Terms that relate the capillary length to thermal prop-

erties of a solidifying material have been used in previ-

ous works and are referred to as the selection parameter

[14] and the dimensionless velocity of solidification [2].

3. Unsteady energy equation

The geometry of solidification on a flat surface is

reduced to two dimensions. Employing modal analysis,

the location of the disturbed front is

sðtÞ ¼ s0ðtÞ þ s0ðy; tÞ ¼ 2k
ffiffiffiffiffi
alt

p
þ eeiðky�xtÞ; ð8Þ

where a prime denotes the disturbance.

The temperature of the liquid is

Tl ¼ Tl0ðx; tÞ þ T 0
l ðx; y; tÞ; ð9Þ

and the temperature of the undisturbed liquid, Tl0, is

the solution to the one-dimensional conduction equation

that satisfies the following boundary conditions: Tl0 ¼ Ti
at a distance far away from the interface and Tl0 ¼ Tm
at the interface. Thus, the equations for the undis-

turbed temperature and for the temperature disturbance

are [6]

ðTl0 � TiÞ
ðTm � TiÞ

¼
erfc x

2
ffiffiffiffi
alt

p
� �
erfck

; T 0
l ¼ /lðxÞeiðky�xtÞ: ð10Þ

Similarly, in the solid region,

Ts ¼ Ts0 þ T 0
s ðx; y; tÞ; ð11Þ

where the undisturbed solid phase temperature, Ts0, is
constant and the disturbance temperature is

T 0
s ¼ /sðxÞeiðky�xtÞ: ð12Þ

The unsteady energy equations of the disturbance in the

liquid and solid phases are

oT 0
s

ot
¼ as

o2T 0
s

ox2

�
þ o2T 0

s

oy2

�
;

oT 0
l

ot
¼ al

o2T 0
l

ox2

�
þ o2T 0

l

oy2

�
:

ð13Þ

By substituting Eqs. (10) and (12) into Eq. (13), the

linear diffusion equations are transformed into the fol-

lowing system of equations in terms of the amplitude of

the temperature disturbance

€//s � k2
�

� ix
as

�
/s ¼ 0; €//l � k2

�
� ix

al

�
/l ¼ 0: ð14Þ

These equations are solved using the boundary condi-

tions defined at the wall, the solid–liquid interface, and

at a distance far away from the interface. Eqs. (10) and

(12) contain the assumption that the /l and /s functions

are independent of time. This is an approximation,

which becomes exact in the limit of a slowly varying

background solution. The fact that the background so-

lution is time-dependent constitutes the temporal anal-

ogy to the non-parallel problems that arise in studies of

interface instability in the spatial development of shear

layers. Assuming time-independence of the /s and /l

functions is equivalent to making a frozen-field as-

sumption of the background flow, meaning that the

disturbance growth is examined as superimposed on the

frozen background field that exists at any given time.

At the solid–liquid interface, the temperature of the

solid and liquid are equal. The equations for the tem-

perature at the interface in the liquid and solid phase at

x ¼ s0 þ s0, including the capillary correction, are [4]:

Ts0 þ T 0
s ¼ Tm þ CK; Tl0 þ T 0

l ¼ Tm þ CK; ð15Þ

where K is the surface curvature.

Fig. 2. Relationship between the Stefan number at the solid–

liquid interface and the solidification parameter k.
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A Taylor-series expansion of Eq. (15) about the un-

disturbed interface, s0, leads to a set of equations with

reduced variables, that can be expressed in terms of the

amplitude of the temperature disturbance

Ts0js0 þ s0
oTs0
ox

����
s0

þ T 0
s js0 þ s0

oT 0
s

ox

����
s0

þ h:o:t: ¼ Tm þ CK:

ð16Þ

Retaining only first-order terms, Eq. (16) reduces to

T 0
s js0 ¼ C

o2s0

oy2
: ð17Þ

Eq. (17) is rewritten in terms of Eqs. (8) and (12), and

represents the boundary condition at the solid–liquid

interface in the solid region

/sðs0Þ ¼ �eCk2: ð18Þ

Similarly, in the liquid, a Taylor-series expansion

about the undisturbed interface s0 in Eq. (15), results in

the following relationship

Tl0js0 þ s0
oTl0
ox

����
s0

þ T 0
l js0 þ s0

oT 0
l

ox

����
s0

þ h:o:t: ¼ Tm þ CK;

ð19Þ

which reduces to

T 0
l js0 ¼ �s0

oTl0
ox

����
s0

þ C
o2s0

oy2
; ð20Þ

upon retaining only linear terms. Eq. (20) is rewritten in

terms of Eqs. (8) and (10)

/lðs0Þ ¼
eðTm � TiÞffiffiffiffiffiffiffiffi

palt
p e�k2

erfck
� eCk2 ð21Þ

and represents the boundary condition at the interface in

the liquid phase.

At the wall, the disturbance vanishes, thus:

T 0
s ð0Þ ¼ 0; /sð0Þ ¼ 0: ð22Þ

Far from the wall, as x approaches infinity, the effect of

the disturbance on the liquid temperature approaches

zero:

T 0
l ð1Þ ¼ 0; /lð1Þ ¼ 0: ð23Þ

3.1. Solution of the perturbation equations

Using the boundary conditions defined in Eqs. (18)

and (22), the solution to the energy equation (14) in the

solid phase is

/sðxÞ ¼ �eCk2
sinhðbsxÞ
sinhðbss0Þ

ð24Þ

The solution to the energy equation (14) in the liquid

phase for the boundary conditions defined in Eqs. (21)

and (23) is

/lðxÞ ¼ e
ðTm � TiÞffiffiffiffiffiffiffiffi

palt
p e�k2

erfck

"
� Ck2

#
eblðs0�xÞ: ð25Þ

Eqs. (24) and (25) show that the amplitudes of the

temperature disturbance, /s and /l, defined in the modal

analysis, are functions of time as explained earlier. In the

following section, the stability of the disturbance at a

fixed time t ¼ s is analyzed. The disturbance can be

unstable when the frequency, x, is complex. When x is

positive and complex, the amplitude of the disturbance

grows exponentially. When x is negative and imaginary,

the disturbance decays and the front remains planar.

Real values of the frequency represent a traveling wave

component, which is either damped or un-damped. The

results show that the interface will not support an un-

damped traveling wave.

4. Dispersion analysis

The relationship between the dimensionless growth

rate and wave number can be analyzed using an energy

balance across the solid–liquid interface. At x ¼ s,

qhsf
os
ot

¼ js

oTs
ox

� jl

oTl
ox

; ð26Þ

or

qhsf
o

ot
ðs0 þ s0Þ ¼ js

o

ox
ðTs0 þ T 0

s Þ � jl

o

ox
ðTl0 þ T 0

l Þ: ð27Þ

A Taylor-series expansion about s0, neglecting higher

order terms, leads to

qhsf
o

ot
ðs0 þ s0Þ ¼ js

oT 0
s

ox

����
s0

� jl

oTl0
ox

�
þ s0

o2Tl0
ox2

þ oT 0
l

ox

�����
s0

;

ð28Þ

or, after the terms for the temperature gradient in the

undisturbed temperature field are removed

qhsf
os0

ot
¼ js

oT 0
s

ox

����
s0

� jls0
o2Tl0
ox2

����
s0

� jl

oT 0
l

ox

����
s0

: ð29Þ

Eq. (29) can be expressed in terms of the disturbance

amplitude in the thermal field by substituting Eqs. (8),

(10) and (12) as follows

�eixqhsf ¼ js
_//sðs0Þ �

ejlkðTm � TiÞ
als

ffiffiffi
p

p
erfck

e�k2 � jl
_//lðs0Þ:

ð30Þ
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From the solutions to the energy equations, as described

in Eqs. (24) and (25), the amplitude of the temperature

disturbance in the solid phase at s0 is

_//sðs0Þ ¼ �ebsCk
2 cothðbss0Þ; ð31Þ

while in the liquid phase it is

_//lðs0Þ ¼ �ebl

ðTm � TiÞe�k2ffiffiffiffiffiffiffiffiffi
pals

p
erfck

 
� Ck2

!
: ð32Þ

By making the substitution x ¼ iX, and introducing

the background Stefan number Ste0 and the capillary

number B, Eq. (30) is rewritten in dimensionless form as

Xs ¼ �Bk2als

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2als þ

al

as

Xs

r
� ks

kl
coth 2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2als þ

al

as

Xs
r� ��

þ 1

�
þ Ste0e�k2ffiffiffi

p
p

erfck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2als þ Xs

p�
� k
�
: ð33Þ

Using the relationship between the background Stefan

number and the solidification parameter in Eq. (2), and

introducing the dimensionless growth rate bXX and wave

number k̂k the dispersion relation becomes

bXX ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂k2 þ bXXq

� k2 � Bk̂k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂k2 þ al

as

bXXr
� ks

kl
coth 2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂k2 þ al

as

bXXr� ��
þ 1

�
; ð34Þ

which can be solved numerically for values of the di-

mensionless growth rate. Further assumptions are nee-

ded in order to solve Eq. (34) analytically. Analysis of a

similarly posed steady-state problem that includes mass

diffusion at the interface shows that a disturbance will

not grow if the growth rate lags behind negative tran-

sient components in the dispersion relation [1]. We

predict that negative transient components in Eq. (34)

will therefore favor interface stability. The second term

on the right hand side (RHS) of the equation, �k2,

originates from the heat transfer into the undisturbed

liquid temperature field and is a negative constant that

has a limited effect on the stability of the interface. This

implies that the stabilizing effect of the thermal gradient

in the undisturbed liquid field only results in an initial

shift toward stability in the longer wavelength region

and does not have an added effect as the wave number

increases. The third term on the RHS of Eq. (34) orig-

inates from effect of surface curvature. The capillary

number, B, increases as the wavelength decreases im-

plying that the effect of surface curvature will increase

the tendency toward stability as the wave number in-

creases.

An analytical solution of the dispersion relation is

possible when the capillary effects are neglected. This

reduced analytical solution provides insight into the in-

terface stability for long wavelengths. In a perturbation

analysis of a steady-state solidification problem, Sekerka

and Mullins [1] found that in the longer wavelength re-

gions, the effect of capillarity on stability is minimal until

the wave numbers reach a critical value in the interme-

diate wavelength region. The effect of surface curvature

on interface stability is further investigated by compar-

ing the solution of the reduced analytical solution to

numerical solution, which includes surface curvature

effects.

5. Analytical solution

By neglecting the capillary effect, the growth rate can

be obtained explicitly. The dispersion relationship at the

interface neglecting curvature effects is

bXX ¼ kð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂k2 þ bXXq

� kÞ: ð35Þ

Solving Eq. (35), the dimensionless growth rate can be

expressed in terms of real and imaginary components

bXX ¼ � k2

2
1

0@ � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 4

k̂k2

k2

s 1A: ð36Þ

Eq. (36) reveals that two roots for each value of the wave

number are possible. For wavelengths in the unstable

regions, the roots are positive real numbers without

imaginary components. This confirms findings for sim-

ilarly posed problems, that the growth rate does not

contain undamped traveling wave components [5,7].

Under stable conditions, the negative values for the di-

mensionless growth rate can have both real and imagi-

nary components indicating that the traveling waves

that appear on the surface are damped. Damped trav-

eling waves occur in the longer wavelength region when

the relationship between the dimensionless wave number

and the solidification parameter is

k̂k2 <
3

4
k2: ð37Þ

A critical wave number for marginal stability is

found by solving Eq. (35) for real positive values of the

dimensionless growth rate. Neglecting the effects of

curvature, one critical wave number is found in the

longer wavelength region and is related to the solidifi-

cation parameter as

k̂kc ¼ k: ð38Þ

This value for the critical wave number represents

marginal stability in the longer wavelength region and

arises from the negative temperature gradient in the

undisturbed liquid phase. Wavelengths, which are longer
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than the critical wavelength, are stable. Wavelengths in

the intermediate and capillary regions remain unstable

unless the effect of surface curvature is considered.

6. Numerical solution

Critical values for the dimensionless wave number,

an indication of marginal stability can be found by

solving for the roots in Eq. (34)

0 ¼ kk̂k � k2 � Bk̂k3
ks
kl

cothð2kk̂kÞ
�

þ 1

�
: ð39Þ

The roots are obtained numerically using the Newton-

Raphson method [15]. Eq. (34) yields two positive values

of the critical wave number, defining a range of inter-

mediate wavelengths that result in unstable perturba-

tions at the solid–liquid interface. The wavelengths that

lie outside the range of intermediate wavelengths, when

introduced on the solid–liquid interface will not grow.

7. Results

To illustrate the results, properties for aluminum

were used in the numerical analysis. The values for these

properties are shown in Table 1 [4]. The results of the

numerical analysis show that the tendency toward in-

stability of the solidifying front increases with increasing

values of the solidification parameter. Fig. 3 shows the

dispersion relation for different values of the solidifica-

tion parameter, k, when the capillary number, B, is 10�2

(Fig. 3a) and 10�3 (Fig. 3b). The curves in the figures

represent wavelength regions in which the growth rate is

positive and therefore the solid–liquid interface becomes

unstable. Wavelengths that are outside of the region

bounded by the curve are stable. Fig. 3a shows that the

disturbance growth rate increases as the solidification

parameter increases. Similarly, increases in the solidifi-

cation parameter result in a range of unstable wave-

lengths that move further into the capillary region. In

the longer wavelength region, increases in the solidifica-

tion parameter result in an increase in stability. The be-

havior of the dispersion relation in the long wavelength

region is illustrated in Fig. 3b for a larger capillary

number. In this region, an increase in the solidification

parameter will shift the point of marginal stability fur-

ther into the intermediate wavelength region. The influ-

ence of the increase in the solidification parameter on

stability is isolated to the longer wavelength region and

does not have an added effect in the intermediate wave-

length region. While an increase in the solidification

parameter increases stability in the longer wavelength

region, the rate of instability increases along with the

range of unstable wavelengths as the wave number ap-

proaches infinity.

Values for the critical wave numbers for changes in

the solidification parameter are given in Table 2. The

Table 1

Properties of pure Aluminum

Variable Value Units

cp 1074 J/kgK

C 9:0� 10�8 Km

hsf 397 490 J/kg

al 3:7� 10�5 m2/s

as 7:0� 10�5 m2/s

kl 95 W/Km

ks 210 W/Km

Fig. 3. Dimensionless growth rate, bXX, versus dimensionless

wave number k̂k for different values of (a) B ¼ 10�3, (b)

B ¼ 10�2.
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contribution of the surface curvature to the condition of

marginal stability in the longer wavelength region is

included. The results in the table show that as the so-

lidification parameter increases, the effect of curvature

decreases and has very slight influence on the critical

wavelength in that region. The second critical wave

number is the result of the capillary number. Wave-

lengths smaller than this value have an interfacial energy

strong enough that a disturbance of this order of mag-

nitude will not grow.

The opposite effect on surface stability is observed for

increasing values of the capillary number. As the capil-

lary number increases, the tendency toward instability

decreases. Fig. 4 shows the dispersion relation for dif-

ferent values of the capillary number, B, when the so-

lidification parameter, k, is 0.05 (Fig. 4a) and 0.4 (Fig.

4b). The curves define a range of wavelengths that will

result in an unstable solid–liquid interface. The results

show that changes in the capillary number have a neg-

ligible effect on marginal stability in the longer wave-

length region. As capillary number increases, the point

of marginal stability in the capillary region shifts toward

the intermediate wavelength region and the magnitude

of the growth rate decreases. Ultimately, as the capillary

number continues to increase, a point of unconditional

stability is reached where a disturbance of any wave-

length introduced at the solid–liquid interface will not

grow.

The values of the critical wave numbers for changes

in the capillary number, B, are given in Table 3. The

results show that for increasing values of the capillary

number, the effect on marginal stability in the longer

wavelength region increases and shifts the critical point

toward the intermediate wavelength region. The capil-

lary number shifts the point of marginal stability toward

the intermediate region, and will eventually create the

condition of absolute stability.

8. Discussion

The behavior of the transient terms on surface sta-

bility is further illustrated using certain mathematical

relationships. In order to determine the nature of the

effects of the temperature gradients and interfacial en-

ergy on interface stability, Eq. (34) can be expressed as

the sum of two functions g and h,

bXX ¼ gðbXX; k̂kÞ þ hðbXX; k̂kÞ; ð40Þ

Table 2

Critical wave numbers as functions of the solidification pa-

rameter

k Critical

value 1

Critical

value 2

Effect of

curvature on CV1

B ¼ 1� 10�3

0.05 0.05 2.0 1:2� 10�3

0.1 0.1 5.0 1:1� 10�3

0.2 0.2 7.8 1:2� 10�3

0.3 0.3 9.5 1:2� 10�3

0.4 0.4 11.0 1:3� 10�3

0.5 0.5 12.2 1:5� 10�3

B ¼ 1� 10�2

0.1 0.11 0.73 1:5� 10�2

0.2 0.21 2.06 1:3� 10�2

0.3 0.31 2.82 1:3� 10�2

0.4 0.41 3.30 1:4� 10�2

0.5 0.52 3.67 1:6� 10�2

0.6 0.62 3.98 1:8� 10�2

Fig. 4. Dependence of the dimensionless growth rate, bXX, on the

capillary number, B, for (a) small thermal supercooling,

k ¼ 0:05, (b) large thermal supercooling, k ¼ 0:4.
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representing the effects of thermal gradients and the

added undercooling effects of surface curvature. In the

analysis we consider a function for the thermal gradients

in the liquid phase

gðbXX; k̂kÞ ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂k2 þ bXXq�

� k

�
; ð41Þ

and a function representing the capillary effect

hðbXX; k̂kÞ ¼ �Bk̂k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂k2 þ al

as

bXXr
ks
kl

coth 2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂k2 þ al

as

bXXr� ��
þ 1

�
:

ð42Þ
A marginal stability function, f ðk̂kÞ ¼ bXX, is defined

when the dimensionless growth rate is zero. A graph of

the marginal stability function

f ðk̂kÞ ¼ gð0; k̂kÞ þ hð0; k̂kÞ; ð43Þ

illustrates the combined contribution of the thermal and

capillary functions to the points of marginal stability,

where f ðk̂kÞ ¼ 0. Fig. 5 shows the behavior of the mar-

ginal stability function with respect to the thermal and

capillary functions when k ¼ 0:4 and B ¼ 1� 10�2. The

curves show that in the longer wavelength region, the

marginal stability function is dependent upon the ther-

mal function and shows negligible dependence upon the

capillary function. As the wavelengths decrease, the

capillary function has a greater influence on the mar-

ginal stability function, resulting in a second point of

marginal stability in the capillary region. Fig. 5 illus-

trates that the analytical solution to the dispersion re-

lation when the capillary function is discarded, is a good

approximation of the behavior of the growth rate in the

longer wavelength regions beyond the point of marginal

stability.

Fig. 6 shows the relationship between the analytical

and numerical solution for all complex values of the

dimensionless growth rate, when k ¼ 0:4 and B ¼ 10�2.

The analytical solution is used to illustrate the behavior

of the growth rate in the longer wavelength region. The

figure illustrates that the growth rate has an imaginary

Table 3

Critical wave numbers as functions of the capillary number

B Critical

value 1

Critical

value 2

Effect of

curvature on CV1

k ¼ 0:4

5� 10�2 0.51 1.12 1� 10�1

1� 10�2 0.41 3.30 1� 10�2

5� 10�3 0.41 4.78 7� 10�3

1� 10�3 0.40 11.0 1� 10�3

5� 10�4 0.40 15.6 7� 10�4

1� 10�4 0.40 35.1 1� 10�4

k ¼ 0:05
5� 10�3 5:7� 10�2 0.39 7� 10�3

1� 10�3 5:1� 10�2 2.0 1� 10�3

5� 10�4 5:1� 10�2 3.7 6� 10�4

1� 10�4 5:0� 10�2 11.6 1� 10�4

5� 10�5 5:0� 10�2 17.2 6� 10�5

1� 10�5 5:0� 10�2 39.4 1� 10�5

Fig. 5. Marginal stability function at the interface for k ¼ 0:4,
B ¼ 10�2. The points at which f ð0; k̂kÞ ¼ 0 represent marginal

stability at the solid–liquid interface. The contributions to the

marginal stability from the thermal gradient, gð0; k̂kÞ, and the

effect of surface curvature, hð0; k̂kÞ, are also shown.

Fig. 6. Real values of the dimensionless growth rate for the

numerical and analytical solutions for k ¼ 0:4, B ¼ 10�2.

The function gðbXX; k̂kÞ represents the thermal gradient while the

function hðbXX; k̂kÞ represents the surface curvature. The numeri-

cal solution includes the effects of surface curvature while these

are neglected in the analytical solution.
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component in the longer wavelength region and that this

component, representing a traveling surface wave, is

damped or unconditionally stable. Beyond the wave

number prescribed in Eq. (37), the growth rate is real

and does not have a traveling wave component. This

result shows that undamped traveling waves will not

occur at the solid–liquid interface. In the analytical so-

lution, the growth has both a positive and negative value

beyond the point of marginal stability. The numerical

solution begins to deviate from the positive analytical

solution in the intermediate wavelength region and

reaches a condition of stability in the capillary region.

The numerical solution shows that the values for the

growth rate in the stable region beyond the point of

marginal stability are negative real values.

The relationship between the thermal and capillary

functions to the numerical solution of the dispersion

relation are shown in Fig. 7 when k ¼ 0:4 and B ¼ 10�2.

The figure illustrates that the value of the thermal

function, gðbXX; k̂kÞ, is positive and increases linearly as the

dimensionless wave number approaches infinity. The

capillary function is negative and decreases in magnitude

following the curve shown in Fig. 7. As the wave number

approaches infinity, the capillary function decreases at a

faster rate than the value for the thermal function. As a

result, the dimensionless wave number is governed by

the thermal function in the longer wavelength region,

and quickly moves toward the stable regions in the in-

termediate and capillary regions as the slope of the

capillary function continues to increase.

Fig. 7 illustrates that if the capillary number is large

enough, the magnitude of the linear thermal function

will never exceed the nonlinear capillary function lead-

ing to a condition of absolute stability where the values

of the dimensionless growth rate are negative. The oc-

currence of absolute stability at the solid–liquid interface

was observed in Fig. 4 for increasing values of the

capillary number.

If the thermal gradient in the undisturbed liquid is

greater than the thermal gradient of the disturbance,

the growth rate of the solidifying front will exceed the

growth rate of the disturbance. As shown in Fig. 3, the

condition of marginal stability in the longer wavelength

region illustrates that the growth rate of the solidifying

front is larger than the growth rate of the disturbances in

the longer wavelength region, and the interface will re-

main stable. As the wavelengths decrease, the thermal

gradient of the disturbance increases linearly and the

growth rate of the disturbance exceeds the growth rate

of the solidifying front resulting in instability at the

solid–liquid interface. The contributions of the thermal

gradient in the disturbance are counterbalanced by the

effect of the curvature, which has an added effect as the

wave number increases. Eventually the interfacial energy

is large enough to inhibit growth in the capillary region,

and the disturbances are damped.

The undercooling at the solid–liquid interface, given

by the Stefan number, can be further analyzed by re-

writing Eq. (3) in the following form

Ste ¼ Ste0 þ d0
o2s0

oy2
¼ Ste0 � ek2d0eiðky�xtÞ

¼
ffiffiffi
p

p
kerfckek2 � B2k̂k2

e
d0

eiðky�xtÞ ð44Þ

Fig. 2 illustrates the effect of surface curvature on values

of the Stefan number when the capillary number, B, is

10�2 and the dimensionless wave number, k̂k, is 30. For

these values of the capillary number and wave number,

the results from the preceding section predict stable

conditions at the solid–liquid interface. In Fig. 2, we

assume that the values for the amplitude of the distur-

bance, e, and the capillary length, d0, are of the same

order and that the ratio is unity. Fig. 2 shows that for an

arbitrary value of the capillary number, undercooling at

the interface increases for concave geometry and de-

creases for convex geometry. At the inflection point, the

undercooling at the interface is equal to the background

Stefan number, Ste0. Fig. 2 illustrates that as the solid-

ification parameter approaches infinity, the Stefan

number reaches a finite value. Values of the Stefan

number that are greater than the finite value are ther-

mally supercooled environments in which the material

no longer exists in a supercooled liquid state and solid-

ification occurs instantaneously.

Fig. 7. Numerical solution of the dispersion relation for the

growth rate, bXX, for k ¼ 0:4, B ¼ 10�2. The graph shows the

contributions of the thermal gradient, gðbXX; k̂kÞ, and the effect of

surface curvature, hðbXX; k̂kÞ.
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9. Conclusions

A linear perturbation analysis has been applied to a

thermally supercooled solidifying front in a half-space.

This analysis focuses on instability in an unsteady tem-

perature field for a homogeneous material. A dispersion

relation was obtained from solutions to the unsteady

energy equations and the boundary condition of heat

conservation at the solid–liquid interface.

The results show that the thermal gradients increase

the growth rates of disturbances at the solid–liquid in-

terfaces and that the effect of surface curvature results in

a decrease in the disturbance growth rates. Further

analysis shows that marginal stability occurs in both the

longer wavelength and capillary regions. By isolating the

terms in the dispersion equation it has been shown that

the thermal gradients cause marginal stability in the

longer wavelength region. In this region, as the solid–

liquid front advances, the growth rate of the solidifying

front is larger than the growth rate of the disturbance,

and the interface remains planar. As the thermal gradi-

ents in the disturbance become larger for increasing

wavelengths, the growth rate of the disturbance in-

creases linearly and quickly exceeds the growth rate of

the solidifying front. When the effect of surface curva-

ture is included in the dispersion analysis, it is observed

that the slope of the capillary function increases while

the slope of the thermal function remains constant as the

wave number approaches infinity. Greater increases in

the capillary function result in a second point of insta-

bility in the capillary region, where the growth of the

disturbance is not large enough to overcome the inter-

facial energy at the solid–liquid surface.
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